Page 28 - MWJC_JulAug2017_eMag
P. 28
TechnicalFeature 技术特写
Integrated Circuits Symposium, June 2008, pp. 629–632.
于还存在一些其他未被加入模型的金 参考文献 11. X. Y. Bao, Y. X. Guo and Y. Z. Xiong, “60-GHz AMC-Based
属,也可能是由于测量装置存在±0.8dB 1. P. Smulders, “Exploring the 60 GHz Band for Local Circularly Polarized On-Chip Antenna Using Standard 0.18-
Wireless Multimedia Access: Prospects and Future
18
的精度误差 。 Directions,”IEEE Communications Magazine, Vol. 40, No. μm CMOS Technology,” IEEE Transactions on Antennas
1, January 2002, pp.140–147. and Propagation, Vol. 60, No. 5, May 2012, pp.2234–2241.
由图7b的坐标系可知E面和H面分别 2. F. Gutierrez, S. Agarwal, K. Parrish and T. S. Rappaport, 12. L. Jiang, J. F. Mao and K. W. Leung, “A CMOS UWB On-
位于XZ及XY平面。辐射方向图如图8所 “On-Chip Integrated Antenna Structures in CMOS for Chip Antenna with a MIM Capacitor Loading AMC,” IEEE
示,可以看到二者的图样都存在一些扭 60GHz WPAN Systems,” IEEE Journal on Selected Areas in Transactions on Electron Devices, Vol.59, No. 6, June 2012,
Communications, Vol. 27, No. 8, October 2009, pp.1367–1378.
pp. 1757–1764.
曲,E面尤甚。 3. A. Barakat, A. Allam, R. K. Pokharel, H. Elsadek, M. El- 13. H. H. Yeh, N. Hiramatsu and K. L. Melde, “The Design
表2列举了本设计与其他案例的性 Sayed and K. Yoshida, “Compact Size High Gain AoC of Broadband 60 GHz AMC Antenna in Multi-Chip RF
Data Transmission,” IEEE Transactions on Antennas and
Using Rectangular AMC in CMOS for 60GHz Millimeter
能比较,峰值增益虽基本相当或略低, Wave Applications,”IEEE International Microwave Propagation, Vol. 61, No. 4, April 2013, pp. 1623–1630.
Symposium Digest, June 2013, pp. 1–3. 14. S. Pan, F. Caster, P. Heydari and F. Capolino, “A 94 GHz
不过芯片尺寸是最小的。 4. R. Wang, Y. Sun, M. Kaynak, S. Beer, J. Borngräber and J. Extremely Thin Metasurface-Based BiCMOS On-Chip
C. Scheytt, “A Micromachined Double-Dipole Antenna Antenna,” IEEE Transactions on Antennas and Propagation,
Vol. 62, No. 9, September 2014, pp. 4439–4451.
总结 for 122 – 140 GHz Applications Based on a SiGe BiCMOS 15. A. Barakat, A. Allam, H. Elsadek, H. Kanaya and R. K.
Technology,” IEEE International Microwave Symposium
本文提出了一种非对称R-AMC设 Digest, June 2012, pp. 1–3. Pokharel, “Small Size 60 GHz CMOS Antenna-on-Chip:
5. K. T. Chan, A. Chin, Y. P. Chen, Y. D. Lin, T. S. Duh and W. Gain and Efficiency Enhancement Using Asymmetric
计,用于增强圆形AoC的增益并减小 J. Lin, “Integrated Antennas on Si, Proton-Implanted Si Artificial Magnetic Conductor,” European Microwave
其尺寸。天线在60GHz时模拟峰值增益 and Si-on-Quartz,” International Electron Devices Meeting Conference, October 2014, pp. 104–107.
Technical Digest, December 2001, pp. 40.6.1–40.6.4. 16. S. Cohn, “Electrolytic Tank Measurements for Microwave
为-0.4dBi。成品采用0.18μm CMOS技 6. H. M. Cheema and A. Shamim, “The Last Barrier: On- Metallic Delay-Lens Media,” Journal of Applied Physics,
2
术制造,总大小1.22mm ,60GHz时测 Chip Antennas,” IEEE Microwave Magazine, Vol. 14, No. Vol. 21, No. 7, July 1950, pp. 674–680.
1, January 2013, pp. 79–91. 17. S. Clavijo, R. R. Diaz, W. E. McKinzie, “Design
得实际峰值增益为-4.3dBi。考虑到探 7. A. Shamim, L. Roy, N. Fong and N. G. Tarr, “24 Methodology for Sievenpiper High-Impedance Surfaces: An
针和AoC周围金属对性能的影响,通过 GHz On-Chip Antennas and Balun on Bulk Si for Air Artificial Magnetic Conductor for Positive Gain Electrically
Transmission,”IEEE Transactions on Antennas and Small Antennas,” IEEE Transactions on Antennas and
对成品进行重新建模,仿真结果与实际 Propagation, Vol. 56, No. 2, February 2008, pp. 303–311. Propagation, Vol. 51, No. 10, October 2003, pp. 2678–2690.
情况的初始差异可以得到消除。在低于 8. Y. P. Zhang, M. Sun and L. H. Guo, “On-Chip Antennas for 18. D. Titz, F. Ferrero and C. Luxey, “Development of a
60-GHz Radios in Silicon Technology,” IEEE Transactions on Millimeter-Wave Measurement Setup and Dedicated Techniques
58GHz的频段上,测量值与模拟值基本 Electron Devices, Vol. 52, No. 7, July 2005, pp. 1664–1668. to Characterize the Matching and Radiation Performance
达成一致。对于较高的频率,1.5dB量级 9. S. S. Hsu, K. C. Wei, C. Y. Hsu and H. R. Chuang, “A 60- of Probe-Fed Antennas,” IEEE Antennas and Propagation
Magazine, Vol. 54, No. 4, August 2012, pp. 188–203.
的差值可能是由于仿真中其他一些没有 GHz Millimeter-Wave CPW-Fed Yagi Antenna Fabricated 19. S. Pan, L. Gilreath, P. Heydari and F. Capolino, “Investigation
by Using 0.18-μm CMOS Technology,”IEEE Electron
考虑到的因素所导致的。辐射图的仿真 Device Letters, Vol. 20, No. 6, June 2008, pp. 625–627. of a Wideband BiCMOS Fully On-Chip W-Band Bowtie Slot
10. P. H. Park and S. S. Wong, “An On-Chip Dipole Antenna Antenna,” IEEE Antennas and Wireless Propagation Letters,
与测量结果吻合良好。■ for Millimeter-Wave Transmitters,” IEEE Radio Frequency Vol.12, June 2013, pp. 706–709.
26 Microwave Journal China 微波杂志 Jul/Aug 2017